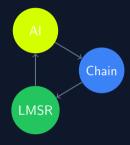


PolyPoll Protocol

G-LMSR Light Paper


Graduated Liquidity-Sensitive Logarithmic Market Scoring Rule

Self-Bootstrapping Prediction Markets on Base

Abstract

PolyPoll is a decentralized prediction market protocol combining:

- Al-Powered market validation
- Blockchain transparency on Base L2
- G-LMSR self-bootstrapping liquidity

Key Innovation

Two-phase market mechanism enabling self-bootstrapping without external liquidity providers

The Problem

Cold-Start Liquidity

- New markets need liquidity
- LPs face adverse selection risk
- Chicken-and-egg problem

Settlement Disputes

- Who decides outcomes?
- Trust single authority
- Opaque resolution

Centralization

- Manual market curation
- Only "popular" topics covered
- Niche markets ignored

Result

High barriers prevent widespread prediction market adoption

Discovery Phase

- Users commit to outcomes
- Commitments fund the market
- Sentiment odds form in real-time

Trading Phase

- Commitments become shares
- Standard LS-LMSR dynamics
- Dynamic liquidity β

Graduated Liquidity-Sensitive Logarithmic Market Scoring Rule

Phase I: Discovery

During discovery, users commit capital to outcomes they believe will win.

Sentiment Odds (real-time feedback):

$$\pi_i = \frac{C_i}{C_{\mathsf{total}}}$$

Key Properties

- No market maker vet
- Commitments accumulate in pool
- Odds = revealed preferences
- **No fees** during discovery

Example:

Outcome	Committed
Yes	\$60
No	\$40
Total	\$100

Sentiment Odds:

$$\pi_{\mathsf{Yes}} = 60\%$$
 $\pi_{\mathsf{No}} = 40\%$

$$\pi_{\mathsf{No}} = 40\%$$

Graduation Transition

When $C_{\text{total}} \geq T$ (threshold), the market **graduates**:

Transformation $\Gamma(P) \to M$

- Shares $q_i = C_i$
- **2 Liquidity** $\beta_0 = \lambda \cdot C_{\text{total}}$
- **Positions** shares(u, i) = C(u, i)

Key Insight

\$1 committed to outcome i=1 share of outcome i

Early believers get positions at prices their commitments establish

Phase II: LS-LMSR Trading

After graduation, standard Liquidity-Sensitive LMSR governs trading:

Cost Function:

$$C(\mathbf{q}) = eta(\mathbf{q}) \cdot \ln \left(\sum_i e^{q_i/eta}
ight)$$

Dynamic Liquidity:

$$eta(\mathbf{q}) = \lambda \cdot \sum_i q_i$$

Price Function:

$$p_i = \frac{e^{q_i/\beta}}{\sum_i e^{q_j/\beta}}$$

Properties

- ✓ Prices sum to 100%
- ✓ Infinite liquidity
- ✓ Bounded loss: $\beta \cdot \ln(n)$
- $\checkmark \beta$ scales with volume

As market grows, slippage decreases proportionally

Self-Bootstrapping Properties

Theorem: No External Liquidity

G-LMSR markets require **no external liquidity provision**.

At graduation:

- $q_i = C_i$ for all outcomes
- $\beta_0 = \lambda \cdot C_{\text{total}}$
- Cost function immediately valid

Early Believer Advantage

Timing	Price	ROI*
Early	Low	High
Late	High	Lower

*If outcome wins

Result

Informed traders naturally commit early \Rightarrow accelerated price discovery

Complete Market Lifecycle

Commit Fund + price discovery **Trade**

Continuous liquidity

Win

\$1 per winning share

Economic Model

Fee Structure

Fee Type	Rate	То
Creator Fee	1%	Creator
Protocol Fee	1%	Treasury
Total	2%	

/ Discovery Phase: FREE

Creator Earnings

Volume	Earnings
\$10,000	\$100
\$100,000	\$1,000
\$1,000,000	\$10,000

Perpetual 1% forever

Platform Revenue Model

Protocol earns when markets successfully graduate and generate trading

Default Parameters

Parameter	Value	Description
λ	0.5	Liquidity sensitivity factor
eta_{min}	100 USDC	Minimum liquidity parameter
$eta_{\sf max}$	10M USDC	Maximum liquidity parameter
\mathcal{T} (threshold)	10 USDC	Graduation commitment threshold
Trade Fee	2%	Fee on buy/sell transactions
Cooling Period	1 hour	Pre-close trade limits
Cooling Max	5%	Max trade size during cooling
Dispute Window	2 days	Time to challenge resolution

Anti-Toxic-Flow Protections

Cooling Period

Final hour before close:

Max trade = 5% of total shares

Resolution Grace

Mandatory delay between event time and resolution prevents front-running

Creator Fee Floor

Minimum fee ensures buffer against adverse selection

 $\mathsf{Time} \to$

Technical Architecture

Contract Address:

0x8BA1...7cf438

Settlement: USDC (6 decimals)

Network: Base (Ethereum L2)

Swipe-to-Bet Experience

Tinder-style prediction markets

- Swipe Right = Bet YES
- Swipe Left = Bet NO
- Swipe Up = Skip / Save for later

Why Swiping?

- Intuitive mobile-first UX
- Reduces decision friction
- Gamified engagement
- Familiar interaction pattern

Gasless Transactions

Zero gas fees for users

PolyPoll sponsors all transaction fees:

How It Works

- User signs transaction off-chain
- Relayer submits to blockchain
- Protocol pays gas from treasury
- User pays only bet amount

Result

Web2-like experience on Web3 rails

User Benefits

- √ No ETH needed
- √ No gas estimation
- No failed txns
- ✓ Instant UX

Powered By

- Base Paymaster
- Account Abstraction
- Meta-transactions

Agentic Oracle Resolution

Al Agents for Market Resolution

Autonomous Al agents that:

- Monitor real-world events
- Gather evidence from multiple sources
- Propose resolutions with citations
- Handle edge cases intelligently

Hybrid Approach

Al proposes \rightarrow Humans verify \rightarrow On-chain finality

Agent Capabilities

- Web search & verification
- Multi-source consensus
- Natural language reasoning
- Dispute evidence gathering

Resolution Flow

- 1. Event occurs
- 2. Agent detects & verifies
- 3. Proposes outcome + proof
- 4. Challenge window (2hr)
- 5. Finalize on-chain

Oracle Resolution Options

Data Type	Oracle	Speed	Dispute
Crypto Prices	Chainlink	Instant	N/A
General Events	Agentic Al	Minutes	2hr window
Arbitrary Events	UMA Optimistic	Hours	1,000+ bond
Complex Disputes	Kleros	Days	Jury arbitration

Chainlink

Decentralized price feeds for BTC, ETH. forex

Agentic Al

Primary resolver — autonomous agents with human oversight

UMA/Kleros

Fallback for disputes and edge cases

CLOB vs AMM: Market Mechanisms

CLOB (Order Book)

Central Limit Order Book

- Buyers & sellers post limit orders
- Trades match when prices cross
- Requires active market makers
- Wide spreads in thin markets

Used by: Traditional exchanges, Polymarket

AMM (Automated Market Maker)

Algorithmic Pricing

- Mathematical formula sets prices
- Always available liquidity
- No counterparty needed
- Bounded, predictable costs

Used by: PolyPoll (G-LMSR)

Why G-LMSR?

CLOB needs liquidity providers \rightarrow cold-start problem. G-LMSR **self-bootstraps** from user commitments.

Prediction Market Landscape

Platform	Mechanism	Chain	Bootstrap	Status
Polymarket	CLOB	Polygon	Market Makers	Leader
Kalshi	CLOB	Off-chain	Regulated	US Only
Augur	Order Book	Ethereum	LPs	Inactive
Gnosis	LMSR	Ethereum	Subsidy	Enterprise
PolyPoll	G-LMSR	Base	Self	Live

CLOB Platforms

Require professional market makers or subsidized liquidity to function

G-LMSR Advantage

Permissionless: Anyone can create a market that bootstraps itself

Mechanism Comparison

Feature	CLOB	Uniswap	LMSR	G-LMSR
Bootstrapping	× MMs	× LPs	× Subsidy	✓ Self
Liquidity	Variable	Always	Always	Always
Loss Bound	$\sf Unlimited$	IL risk	eta In \emph{n}	eta In \emph{n}
Price Sum	N/A	Variable	100%	100%
Early Reward				\checkmark
Gasless	Varies	×	Varies	\checkmark

G-LMSR Advantage

 ${\bf Self\text{-}bootstrapping} + {\bf Early} \ {\bf believer} \ {\bf rewards} + {\bf Bounded} \ {\bf loss} + {\bf Gasless} \ {\bf UX}$

Conclusion

G-LMSR solves the prediction market bootstrapping problem:

Informed traders benefit from early commitment

Self-Bootstrapping

No external capital required

Seamless UX

Committers become shareholders automatically

polypoll.org — @polypoll_io

Contract: 0x8BA1Aa88C279Ac2820d86f843aB430824f7cf438 (Base)

Thank You

Build the Future of Prediction Markets